
DOCUMENT RESUME

ED 281 565 IR 051 917

AUTHOR Breazeal, Juliette Ow
TITLE Integration of Heterogeneous Bibliographic

Information through Data Abstractions.
INSTITUTION California Univ., Livermore. Lawrence Livermore

Lab.
SPONS AGENCY Department of Energy, Washington, D.C.
REPORT NO UCRL-53710
PUB DATE Jan 86
CONTRACT W-7405-Eng-48
NOTE 73p.; Master's Thesis, University of California at

Davis. Appendices contain small type.
PUB TYPE Dissertations/Theses - Master Theses (042) -- Reports

- Research/Technical (143)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS *Citations (References); *Classification; Computer

Software; Databases; *Information Processing;
Information Systems; Pattern Recognition;
*Programing; Vertical Organization

IDENTIFIERS Bibliographic Data Bases; *Data Abstraction;
*Database Integration; Information Consistency

ABSTRACT
This study examines the integration of heterogeneous

bibliographic information resources from geographically distributed
locations in an automated, unified, and controlled way using abstract
data types called "classes" through the Message-Object Model defined
in Smalltalk-80 software. The concept of achieving data consistency
by developing classes for each type of information in a bibliographic
citation, such as "date" or "title," is discussed as a method of
simplifying the programmer's task; previous methods for processing
heterogeneous bibliographic information are summarized; and the
message-object model is defined. Finally, a detailed description is
provided of the development of prototype classes using the
Objective-C compiler based on the Smalltalk-80 Message-Object Model
and the use of the prototype classes to integrate the citations
retrieved from six online databases. Twenty-one references are
provided, and the text is supplemented with four tables and three
diagrams. Appendices include: (1) the hierarchy of Objective-C
Classes; (2) the Objective-C base tree; (3) the prototype source
code; and (4) a copy of the merged file of heterogeneous
bibliographic citations from six database sources. (KM)

Reproductions supplied by EDRS are the best that can be made

from the original document.

_17.8. DEPARTMENT OF EDUCATION
Officeof_EducationafFlesedigh and Improvement
EDUCATIONAL RESOURCESINFORMATION

CENTER (ERIC)

tr.V 6 lillThis clOcument has been reProdUdird _ai
recetv_td_from the person or organization440 i originating it. .

0 %Amor -changes have been made to improve
UNreproduction duality.

11'4 Pointed vrew or opinions stated in t hisdocu-
men! do not _negeasaciiv represent official03 OERI position or policy.

Integration of Heterogeneous
Bibliographic Information

Through Data Abstractions
Juliette Ow Breazeal

(M.S Thesis)

January 1986

BEST COPY AVAIL AMY 2

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Governmem.
Neither the United States Government nor the University of California nor any of their employees, makes any
%arranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use viould not infringe
privately owned rights. Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitut" or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein_ do not necessarily state or reflect those of the United States Government or the University of
California and shall not be used for advertising or product endorsement purposes.

Work performed under_ the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

UCRL-53710
Distribution Category UC-32

Integration of Heterogeneous
Bibliographic Information

Through Data Abstractions

Juliette Ow Breazeal

(MS. Thesis)

Manuscript date: January 1986

LAWRENCE LIVERMORE NATIONAL LABORATORY
University of California Livermore, California 94550

Available from: National Technical Information Service U.S. Department of Commerce
5285 Port Royal Road Springfield, VA 22161 A03 (Microfiche A01)

4

Integration of Heterogeneous Bibliographic Information
Through Data Abstractions

Approved:

By

JULIETTE OW BREAZEAL
A.B. (University of California, Los Angeles) 1960

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE
in

Computing Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

fy?,L

Committee in Charge

Deposited in the University Library
Date Librarian

Abstract

In this study; heterogeneous bibliographic information resources from geographically distributed

locationS are integrated in an automatedi unified and controlled way by using abstract data types through

the Message-Object Model as defined in Smalltalk-80. A unit of modularity call a "class" is developed that

defines operations to process the data structures encapsulated in the class. The classes focus on prOcesSing

bibliographic citations obtained from heterogeneous on-line bibliographic databases into a meta-form with

the goal of developing information consistency to simplify further information analysis. ClasSes dëvéloped

for the bibliegraphic citation application can speed program development because the data abstractions can

be used in processing generic information such as dates regardless of the bibliographic database source.

Prototype classes are developed to show the ease in encapsulating data structures and behaviors for the

bibliographic citation application. Data abstractions provides a powerful integration technique that allow

the designer to work with bibliographic citation objects without being encumbered with the details of

implementation.

KeyWOrdE:

abstract data types, message-object model, class message, class methods, Smalltalk=80, Objective-C,

infortriation conSistency, clatabaSe conSistency, database reformatting, database integration.

Acknowledgements

I wish to gratefully acknowledge the encouragement, dedication and guidance by Professor Meera

Blatmer, my thesis adviser, towards the success of this study. Both Dr. Hilary Burton and Professor

Lawrence Kou have my gratitude for their help in reviewing this study and providing excellent comments

and suggestions. My thanks are extended to the Technology Information System Group, the Computing

Research Group, and the Electronics Engineering Research Group at the Lawrence Livermore National

Laboratory for their support and their cooperation. Finally, I thank my husband, Norman and my children,

William and Cynthia for their devotion and patience during this academic endeavor.

Contents

Page

Chapter 1: Introduction
1

Chapter 2: Previous Methods for Processing Heterogeneous
Bibliographic Information

2.1 Why use Heterogeneous Bibliographic Information Resources? 4

2.2 Description of Bibliographic Citations 6

2.3 Processing of Heterogeneous Bibliographic Information 7

Chapter 3: The Message-Object Model. 14

3.1 Abstraction Mechanisms in Modem Programming 14

3.1.1 Software Abstractions 15

3.1.2 Structured Programming Methodology 16

3.1.3 Abstract Data Types 16

3.2 Object-Oriented Programming 17

32.1 Objects 18

3.2.2 Messages 18

3.2.3 Classes 18

3.2.4 Methods 19

33 Benefits of Object-Oriented Software 19

Chapter 4: Prototype Development Environment 21

4.1 Computer Systkan 21

42 Software Development Tool 21

4.2.1 Objective-C Compiler 22

4.2.2 Unix Tool: Lex 26

-iv-

Page

4.2.3 Unix Tool: Yacc 26

4.2.4 Unix Tool: Make 27

4.3 Summary 27

Chapter 5: Prototype Implementation 28

5.1 Sources of Data 29

5.2 Reformatting the Detail Information for Consistency 29

5.3 Program Design Abstractions 30

5A The Prototype 31

54.1 Lex Specification File 31

5.4.2 Yacc Specification File 33

5.43 Date Class 36

5.4.4 Main Module 37

Chapter 6: Summary and Results 38

Chapter 7: Discussion and Future Directions 42

References- 45

Appendix A: Hierarchy of Objective-C Classes 47

Appendix B: Objective-C Base Tree - methods 50

Appendix C: Prototype Source Code 56

Appendix D: Merged File of Heterogeneous Bibliographic Citations 60
from Six Database Sources

-v-

9

Chapter 1:

Introduction

In recent years, the development of abstraction mechanisms in languages has focused on abstract

data types to "manage complexity by emphasizing what is significant to the user and suppressing what is

not"[Sha84]. This has lead to mOdem pmgramrning languages such as Smalltalk-80, Flr.ors, and Ada.

Software methodologies have been developed to address engineering concerns in requirements,

specification, design, implementation, correctness, and reliability to reduce cost during the software

development and maintenance phases. The use of abstractions to logically reduce the complexity of the

task is aided by modern language mechanisms in that they provide the language constructs to encapsulate a

logical data type and the Operations associated with it. The language constructs of "Classes" or "Flavors"

help in the abstraction process; This project is based the use of abstractions to obtain data consistency in

heterOgeneciuS databases. Our specific implementation was applied to bibliographic information. Similar

techniques may be applied to other types of databases, as described in Chapter 7.

Bibliographic citation databases from heterogeneous information resources are used widely in

research and development work. These databases are often accessed to do a subject search or to prepare a

bibliography. The citations contained in the bibliographic databases may be large in number and collected

over a long period of time. This process was done manually before computers became readily available,

and was tedious and error prone. Today computers are used widely for this task. Modem computer

automated tools have been developed to assist in such bibliographic processing and are continually being

enhanced[Gol85).

A research task may consist of accessing several bibliograpoic systems such as DIALOG, INSPEC,

NASA/RECON, DOE/RECON, or DOD/DROLS.

1 0

The respective retrieved citation lists are down-loaded into a user file for post-processing analysis. Each

database has its own form because of independent development prograinS and a lack of generally accepted

standards. Hence post-processing analysis on a database citation file requires an individualized software

processing package for each citation database. Sometimes the user's files are merged if software is

available to translate the files into a common format.

To analyze data from the down-loaded and merged files requires data consistency. Hence a

prototype has been developed to provide the tool to make heterogeneous bibliographic citation databases

consistent. For example, the search for citations within a range of dates is encumbered by the problem that

dates may be represented in different formats in different databases. Searches on author namet are alsd a

problem if different databases enter first, middle or last names in vaiyhig formats. The goal is to have one

taol process the heterogeneous bibliographic citations into a standard form to provide the basis for

convenient data analysis.

Significant improvements are made by conceptualizing the problem of data consistency by

abstractions in terms of Smalltalk classes. Since the information types in citations are broadly similar,

classes can be developed for each type of information such as "date" or "title". Careful specification of the

classes can simplify the progranuners task since inteifaces will be defined, and data and their behaviors

will be understood. Another improvement occurs when future enhancements are built on the classes

already developed and serve to reduce the amount of new software needed.

This study shows the ease in developing prototype classes for integrating heterogeneous

bibliographic thation databases and suggests the basis for the development of additional classes required

for the complete application. The modularity of software, the inheritance by classes, the encapsulation of

data structures and operations, and the use of dynamic binding reduce the task of the software design& and

developer. Hence the Object-Message abstraction narrows the gap between the concepts and analysis of the

problem and the notation used in the computer software to solve the problem.

In the following chapters, we discuss the background, motivation, and deVelopment of abstract data

types via Smallta1k-80 classes to solve the problem of data consistency in heterogeneous bibliographic

citation databases.

1 1

Chapter 2 discusses previous methods used. Chapter 3 gives the characteristics Of the Message=Object

Model. Chapter 4 discusses the physical hardware and software methods used to create the Objective-C

classes for the prototype. Chapter 5 discusses the specifics of the prototype implementation, Chapter 6

discusses the results of the prototype implementation, and the last chapter discusses future directions.

Chapter

Previous Methods for Processing Heterogeneous

Bibliocraphic Information

This chapter gives some background information on bibliographic citation databases and discusses

previous methods for processing the information.

2.1 Why Use Heterogeneous BNiographic Inform:ion Resources?

Hall and Brown provide a statistical study of the on-line bibliographic databases that is the basis of

this section[Hal83]. Online databases have been available since the 1960s but have mostly been in-house.

Since 1972, there has been a rapid growth of publicly accessible databases.

Table I

Number of Bibliographic References Available Online

in millions

1 1968 I 1972 1976 1980 I 1982 1
4 3-1_ 20 I 58 I_ 77

The current rate of addition is 8.7 million references per year. With duplication accounted for, the

estimate is 50 million singular references available for use and six million additions to the reference pool

made per year.

-4-

Parallel to the four-fold increase from 1976 to 1982, the growth in on-line use is estimamd to be six

fold as seen in Table II.

Table II

Bibliographic Searches on Public Systems in U.S.A. and Canada

in millions

175 1977 1979 1981
2 4 6

There are four particularly predominant database services. They are listed in Table III. Each supplier

strives for uncommon databases in their service. Nearly 20 percent of the important databases are not

available from the four services.

Table III

Unique and Common Databases available from major suppliers

Supplier BRS DIALOG IRS ORBIT
Unique _8 39 5
Common 28 56 27 28
Total Number
Total Percent

36
21

45
55

32
18

52
30

The vast repertoire of information makes the access to hemrogeneous bibliographic information an

important resource to a researcher. From Table III, we see that a password to DIALOG gives access to

fifty-five percent of the databases. An additional password to ORBIT gives a total access to seventy

percent of the databases.

=5=

1 4

Up to 1984, more than 2453 citation and numeric data files were available from 362 on-line

information vendors[Cua84]. Scientific disciplines are continually adding to the published set of abstracts

and citations. Most on-line bibliographic information is still obtained in printed form after an on-line

search. The vast amount of information needs a tool with a unified view to extract significant scientific

and technological intelligence.

22 Description of Bibliographic Citations

To understand the problems involved in heterogeneous bibliographic citations a simple MEDLINE

citation is described as it is mounted on BRS. Only six fields were selectively down-loaded.

Sample Bibliographic Citation

[AU] Bowry-T-R. Oywang-J. Lumba-M.

[IN] Department of Human Pathology, Faculty of Medicine, University of Nairobi, Kenya.

[n] HBV infection: prevalence of core antibody and other markers in urban based black school

children in Kenya.

[SO] Ann-Trop-Paediatr. 1983 Dec. 3(4). P 197-200.

[IS] 02724939

15

The AU represents author, with hyphens separating initials. EG represents language and IS is the

accession number for the citation in the particular database. IN represents the institutional affiliation of the

author, T1 is the title, and SO is the source. The same bibliographic citation from a different database

source may be formatted in a completely different way. Inconsistency in the detail field hinders

information analysis[Go185].

23 Processing of Heterogeneous Bibliographic Mformation

With the appropriate administrative requirements fulfilled, a user can down-load bibliographic

records from a variety of on-line services such as BRS or DIALOG. Typically, an off-line printing

follows a search, and is arranged in reversed chronological order. The need for computer based editing

tools is a natural consequence. Rather than obtaining the down-loaded information in stanks of printout,

the bibliographic citations are down-loaded to a disk file so a computer can be used for automated

processing of the information. We observe two problems that exist in local processing of the file. The file

must be translated into a common form to handle the different database formats for data tags and to handle

the inconsistencies in the detail information associated with each data tag.

Tools to develop data consistency are available in most modern database management systems.

Information consistency within a specific bibliographic database may also be augmented by locally

developed software and procedures. The database administrator can use software tools to constrain data

entry to meet certain requirements. The user may be required to enter data strictly in integer format within

a certain range of values or character format within a certain string le! zth. Furthermore, the user may be

required to enter strings that are pre-defined in a dictionary for that attribute, such as one of eight

acceptable colors. We can see at this point that information may be entered correctly into a particular

database in formats that are singularly defined by the local database administrator. However, there may be

inconsistent formats among the heterogeneous bibliographic databases because of a lack of standards and

autonomous database development and administration. For example, dates can be constrained in a local

database to be either May 1, 1985 or 1 May 1985 format.

16

There may be additional differences in upper/lower cases, abbreviations, spaces, or punctuation. These

inconsistencies hinder the automated processing of bibliographic citations in the down-loaded disk file.

Hence we lind in processing a search based on date ranges, softwam must be written to handle the date

discrepamcies, or the search will be incomplete. Author names also introduce problems because R. L.

Smith, Richard L. Smith, and Richard Lee Smith are the names of the same author. If one desires a list of

articles written by Richard Lee Smith after a certain date, the tabulation would be inaccurate.

A recent study on popular 'front-end systems' available on the market for processing bibliographic

citations shows that the user has a limited choice of features such as down-loading and file creation.(i.e.,

Sci Mate, In Search, CONI1)[Bo1841. Software is not available to address the problem of data consistency

among heterogeneous databases.

Goldstein and Prettyman have developed software to process down-loaded citations with the goal of

incorporating a specified reference format into manuscripts. In their work they encounter the typical

problems of processing heterogeneous bibliographic citations.

They propose transforming each citation into the following canonical format.

Field # Data Element Tag
1 TYPE TY
2 DATABASE DE
3 TITLE TI
4 AUTHOR AU
5 SOURCE SO
6 iNSTITUTION IN
7 NO. & TYPE MTG NO
8 MEETING TITLE TM
9 VOLUME NO. VL
10 ISSUE IS
11 MONTH (JOURNAL) MO
12 DAY (JOURNAL) DY
13 YEAR (JOURNAL) YR
14 MONTH (MEETING) MM
15 DAY (MEETING) DM
16 YEAR_(MEETING) YM
17 PAGES PG
18 TOTAL PAGES TP
19 PUBLISHER PU
20 PUBL. CITY PT
21 PUBL. STATE_ PS
22 PUBL. COUNTRY PC
23 PUBLICATION YR PY
24 MTGLITY MT
25 MTG.STATE MS
26 MTG COUNTRY MC
27 REPORT NO. RN
28 RETRIEVAL NO. RG
29 ISSN NO. SN
30 PART NUMBER PN
31 CODEN CD
32 Nam NT
33 EDITOR TYPE ED
34 AVAILABILITY AV
35 COPYRIGHT YEAR CY
36 PUBL.AUTHOR AA_

The process is divided into three stages.

Pre-Processing

Parsing

Post-Processing

t

-9-

Steps for pre-processing records Clown-loaded from heterogeneous databases into separate local files

are:

1. translate field labels in all files to a common set;

2. include fields for, and add database and retrieval system names to all records;

3. merge all records into one file;

4. reorder the records into a format that is optimized for further processing;

5. determine and add the type of publication;

6. standardize the format of the author's name.

The parsing stage is to separate the complex source field into discrete infornntion. Further details

are found in Chapter 3.

Post-processing is to further format the information for consistency in the end-product application

program. The end-product could be a statistical analysis based on certain keywords or a bibliography for a

publication.

The post-processing tasks are:

1. conversion for case consistency;

2. standardize journal titles;

3. correct inconsistencies in format;

4. expand abbreviated titles;

5. add missing data;

6. make linkages between articles and proceedings; chapter and citations.

The Goldstein and Prettyman work involves knowing the database source and then writing specific

software for that bibliographic database source. Their proposal for a canonical form for bibliographic

- 10-

19

citation databases iS an attempt to develop standardization regardless of the bibliographic citationsources.

A significant amount of work has been done in the processing of heterogeneous bibliographic

citation databases by the Technology Information System(TIS) of the Lawrence Livermore National

Laboratory(LLNL). They have been working on technology transfer through computer networks located

nationally and abroad since 1975 and have developed the Integrated Information System (HS) that manages

information and resources tin the TIS system. HS supports the down-loading and analysis of bibliographic

citations from heterogeneous database services. A major goal is to provide the capability to eictract

Scientific arid technological intelligence from the information contained in these databases. To accomplish

this, software has been developed to process bibliographic citations from the federal information centers of

the Department of Energy (DOE), the Department of Defense(DOD); and the National Aeronautics and

Space Administration(NASA) as well as the three major U. S. commercial services --- Lockheed-

DIALOG, SDC-ORB1T, and BRS. [Bo184]

The Integrated Information System (HS) software package is menu-driven and provides for the

following bibliographic database options:

[TRANSLATE]

[MERGE]

[STAT]

[ANALYZE]

[REVIEW]

[CONCORD]

[PERMUTE]

[CROSS]

[PLOT]

[DISPLAY]

translates citations to a standard format

combines translated files from different sources into one file

creates a statistical profile of citations

analyzes bibliographical text

permits on-line evaluation of citations for relevancy.

creates indexes by author, subject, descriptors, etc.

issues multi-term statistics of the text in selected data fields

cross-correlates the contents of data fields

shows the number of citations by year in a graph

displays the contents of any file on the CRT screen

2 o

TRANSUCTE, MERGE, DISPLAY and REVIEW do the pre-pzocessing steps 14 mentioned by

Goldstein and Prettyman. ANALYZE, CONCORD, PERMUTE, CROSS, PLOT, and STAT allow the

user to produce some trend analysis from the bibliographic citations that have gone through the

preprocessing steps.

Currently, the trend analysis is not entirely accurate since the detail information is not entirely

consistent. A closer examination of the pre-processed files shows dates in the following form:

1 May 1985

. May 1, 1985

1985.

5/111985

5. 1985

6. 5/1/85

7. May 1985

8. May, , 1985

The job of producing a file that is consictent is time-consuming and difficult; duplicate bibliographic

citations are not easily detected. A particular citation usually contains only a subset from the set of data

tags and different databases may enter certain detail information under different data tags. An example is

the the following:

<DATABASE SOURCE> DIALOG NTIS FILE 6

tTITLE> Online Directory of Databases for Material Properties

<DATABASE SOURCE> DOE/recon

<TITLE(MONO)> Online directory of databases for material properties

-12-

21

The purpose of this project is to further extend the consistency of the detail information found in a

merged file that is the result of down-loading heterogenous bibliographic citation databases. It is through

the development of abstract data type Smalltalk-80 classes that similar types of informadon can be

standardized, regardless of source. The standardization of dates and aue-ors and titles include accounting

for spaces, punctuation, capitalization, and ordering.

Chapter 3:

The Message-Object Model

We first establish the foundadon for using abstractions in software development. Next, we discuss

the motivation for using abstract data types via Smalltzlk 80 classes to solve the data consistency problem

in heterogeneous bibliographic citation databases.

3.1 Abstraction Mechanisms in Modern Programming

Recent work in programming methodology has led to the recognition of three kinds of abstractions:

control, procedural and data. A large effort has been expended in developing a modern programming

methodology so software is constructed that is easy to understand, modify, maintain, and is reliable. The

quality of a program depends on the programming methodology used. The effective utilization of the

methodology is Mongly dependent on the programming language selected for the software development

Certain concepts in the methodology may be difficult to put into place if the language does not provide the

constructs that make the process automatic. The language does influence the way a programmer thinks and

formulates ideas. A good match of the methodology and the language enhances the likehood that the

methodology will be followed. An example would be to attempt to introduce the concept of block structure

using Fortran 66. A better choice would be Pascal because the language supports block structured

constructs. While it is true that software can be written in Fortran to simulate the methodology, the job is

unnecessarily enlarged for the software implementer[Lis74][Lis77].

-14-

23

333 Software Abstractions

What do we mean by software abstractions? We mean that the abStraction iSolates the use from the

implementation. That is to say, that the abstraction cif' be used without the knowledge of how the

implementation was carriad oat, and the implementation can be done without the knowledge of how it is to

be used[Lis77]. In the early !.950s, we see the al:Vice:ton of abstractions in termt of n-ssembly language

rather than machine language in terms of octal numbers. Three letter acronyms were used instead of an

octal number that represented the operator. Operands were designated by symbolic labels rather than

absolute addresses in memory. Early languages Supported built-in data types like hiteger anti reals. One

did not think hi tenns of binary bits in a computer word at a certain physical location in memory. Later

type checking aided in appropriate default conversions when a real number was added to an integer.

Hence, the programmer was relieved of loV level detail. Procedural and control abstractions were

dominant Sorting procedures and square root functions could be specified without requiring knowledge of

the implementation, and the implementation could be done without knowledge of bow they were to be

used. Later; control abstractions such as dozloOpS were made available bo the concept of iteration was

abstracted by the language construct. Abstractions were treated as a program organization technique.

Programmers could define macros and define new data types required by a specific problem. We note that

data structures such as stacks and linked lists were first treated systematically in 1968. The idea of

studying and formalizing programming activity dates back to this time[Sha84].

What was recognized in early 1970 was that programs were difficult to understand and maintain.

With the infamous gotos that spanned a large number of software lines indiscriminately, the term "spaghetti

code" evolved and was a familiar occurrence among programmers. Locality was advocated in terms of if-

then-else or do-while control constnicts. For a while, extensible languages were promoted because they

allowed the programmer to add new control constructs and data types to the base language in an attempt to

add clarity to the program and make the programmer's taSkS eaSier. This idea became unpopular since it

was difficult to keep independent extensions compatible; to organize the definitions so related information

were grouped together, and to find a technique to describe the extensions accurately.

-15- 24

The need for more accura te specifications was recognized since programmers typically relied on

procedure headers and patameter lists with accompanying text to define the procedural abst-action. ThiS

specification technique depended on individual styles, and some were well written and accurate, while

others wem vague or out of date;

332 Structured Programming Methodology

The structured programming methodology wss developed in the 1:74.70s to address these problems: to

make programs reliable, easy to understand, develop and maiwaia. I detailed phases in software

development, specified tools needed to assist in the process; and established tests and criteria for program

correctnesS. Program development was to evolve top-down using the idea of abstractions. First the

statement of the problem was presented and then successive refinements were made until the problem Was

finally solved; The idea is to start with a high level abstraction and then progress by problem

decomposition to recognizing subsidiary abstractions. This is where we find modern progranuning

languages as CLU, Alphart ADA, Concurrent Pascal, Euclid, Gypsy, Mesa and Modula being developed

to support the structured programming methodology[Sha84].

3.1.3 Abstract Data Types

Procedwal and control abstractions were available but the idea of abstract data types needed

promotion; Through abstract data types, tin idea of locality would hence be further extiLnded, making

programs easier to design, implement, and maintain. Specifications would be easier to write because of the

encapsulation of the data structures. Data behaviors could be defined only within the abstract data type.

The requirements of a language supporting data abstractions developed. Linguistic constructs Were needed

that implemented data abstractions as a unit in terms of data representations and operations on the data.

The construct would provide a mechanism by which the language would limit access to the representation

except by the operations defined. Smalltalk is such a language with abstract data types in te. ms of classes.

CLU has clusters; Ada has packages; Flai has flavors.

-16-

A basic concept is that the operations defined for a class must include all operationS needed in handling the

data Structure. Usually the operations include create, modify, and access operations. The desirability of

classes is that the language takes care of all the interface specifications, the names for instantiations of the

classes, the assignment, argument passing and type correctness.

Essential to abstract data types is the primitive library that is provided with the compiler; Here

typical abstract data types as arrays, AVL trees, bags, and dictionarieS are proVided from which the

programmer can develop new abstract data types partkular to the applicadon: Inheritance i3 important in

that new abstract data types that are defined are based on the properties defined in a primitive absmot data

type. As a matter of fact the abstract data types axe usually arranged in a hierarchical tree so that an

abstract data type inheritS all the properties defined between it and the root of the tree.

Abstract data types are the means by which the human can transform prOblern=domain concepts into

the computer=domairi Model. In other words; the separation of specificafion and implementation is the

desired result; The goal is that program correctness at the abstract level can be ascertained before the

implementation. The phrases "abstract data types" and "object-oriented programming have be-en used in

various contexts, from Simula and itS derivatives such as Ada to powerful data description languages used

in knowledge representation. The meaning we apply is in the Smalltalk-80 context.[Cox84]

3.2 Object-Oriented Programming

Object-Oriented Programming replaces the operator-operand conceptS that are used in the traditional

computer=domain mcidel. The idea is to introduce a coordination tool that supports change; reusability; and

enhancements. The goal is to transfer work from the human to the machine and to enhance conSistency

from the human viewpoint.

Two major concepts of Object-Oriented programming are encapsulation and inheritance;

EntapSnlation is an aid in using the system and isolates the objects from theenvironment eXcept thrOugh a

carefully controlled interface. Inheritance is a aid to building the system. New closes are defined by first

inheriting the data and behaviors of older generic classes, then specifying only how the new ones differs.

The idea is to define the data abstractions so the programming task is made minimal.

-17-

Now we will define some terms used in a Message-Object programming language such as

Smalltalk-80. The terms object, message, class, instance, and method are all defined in terms of each other.

We will relate the terms to the Objective-C compiler that is a derivative of Smalltalk-80, and will clarify

them by examples in Chapter 5.

32.1 Objects

Objects are virtual(computer-based) machines. They have some data (private part), a set of

operations(shared part), and a run-time mechanism for selecting operations on the data that ate activated by

a message sent to the object. They exhibit one of their behaviors when they receive a message.

322 Messages

Messages are sent to objects and are requests to obtain a desired result. The message contains a

predefined operation(method) to be done on the data structure and are serviced one at a time by the object.

Objects representing numbers have arithmetic operations; objects representing data structures as AVL trees

create an empty tree, add, delete, modify, or count elements.

3.2.3 Classes

A class represents a description of a group of similar objects. A class is the abstract data type and an

object is an instantiation of it. For example the class rectangle deals with the generic group of rectangles,

but an instance of class rectangle will have specific dimensions for length and width. Binding is done at

run-time so there is no static type checking at corpile time. An example would be the class Array in

Objective-C. The subclasses BytArray, IdArray, and IntArray inherit properties from class Array. Hence

an operation as printOn defined in class Array will work on any of the three subclasses mentioned,

although the data representations differ in terms of byte, Id, or integer. Also a new subclass defined later

will also be handled correctly, and class Array does not have to be revised to make considerations for the

new subclass data type. This is how reusability in data abstractions becomes a major asset in software

development

-18-

27

32.4 Methods

A method is a description of how to do an operation and is specific to the class in which it has been

defined. It resembles procedures and could use class variables as parameters. Methods are written in a

high level language like Smalltalk-80, Lisp, or C. The set of methods should include all the operations

needed to work with the encapsulated data, either via inheritance or definition within the class.

3.3. Benefits of Object-Oriented Software

One basic caveat of object-oriented software is the concept of reliable reusable code. As a matter of

fact the classes are called IC's from the engineering concept of integrated circuits. To start with, one uses

a set of basic classes that form the root of the inheritance tree that can be systematically augmented by

defining new classes.

To further understand the problem we are addressthg, let us look at the Goldstein and

Prettyman[Go185] analysis of bibliographic sources from four different bibliographic citation databases:

MEDUNE, INSPEC, ISIC, and COMPENDEX.

[MEDLINE] Ami-Trop-Paediatr. 1983 Dec. 17-18. 30). P 197-200.

[INSPEC] LASER FOCUS (USA). VOL.19, NO.8. 61-6.

[ISIC] COMPUTER 9(3):11-12

[COMPENDEX]

a) Electronics v 56 n 7 Apr 7 1983 p lf 5-157.

b) MEE Trans Magn v Mag-14 n 5 Sep 1918; 1NTERMAG (Int Magn) Conf,

Florence, Italy, May 942 1978 p 964-965.

The parsing of the citation source is a major task in arriving at the information in the canonical form

suggested. It cannot be automated fully; and is iterative due to inconsittency in the data, addition ofnew

words to the authority dictionaries, and new valid acronyms, entries and words.

-19=

\ 28

Goldstein and Prettyman give an accompanying parsing structure for each of the above citation

sources.

[MEDL1NE] [title].*[year]*[month].*[day(s)].*[vol]([issue]).*P*[pages].

[1NSPEC] [title]([country]).*VOL[volume],*NO.[number].*[pages].

[ISIC] [title]*[volume]([issue]):[pages]

[COMPENDEX]

a) [title]*v*[volume]*n*[issue]qmonth]*[day(s)]*[year]*p*[pages]

b) [title]*v*[volume]*n*[issue]*[rnonth]*[days]*[year],*

[conL name],*[city],*[country],*[month]*[day(s)]*

[year]*p*[pages].

One observes there are classes that are common to the different sources. As a matter of fact, the

tasks involved in processing for data consistency of title, volume, and date, are similar regardless of the

database origin or the citation source. There may be variations in case, punctuation, abbreviations, and/or

format. We see date specified as Sep 1978 or May 9-12 1978 in the COMPENDEX sources. The goal of

this project is to develop some prototype classes that augment the set of generic classes to provide the

abstract data types needed to produce data consistency in citations from heterogeneous bibliographic

databases.

Chapter 4:

Prototype Development Environment

This chapter describes the physical hardware and software methods used to implement the prototype

iclasses to process heterogeneous bibliographic citation databases nto a consistent form.

4.1 Computer System

The work was started on the LLNL Engineering Research Division (ERD) VAX 111780 using the

VMS operating system since it was the only installation with the Objective-C compiler at LLNL at the

time. The parser development using the Unix tools LEX and YACC was done on the Tektronix 6205

workstation. The parser modules were sent over the netWork to the VAX to be compiled by Objective-C

along with the prototype class modules to mize use of the resources on the VAX With limited system

resources on the ERD VAX, the work was later completed on the LLNL Technology Information System

(TIS), which meanwhile acquired the Objective-C compiler. Their VAX 11/780 uses the UNIX operating

system BSD 4.2; certain VMS program lines needed for compatibility with Objective-C were removed. In

general the environment was simpler for development work since the VMS port for the Objective-C was

still in progress whereas the port for Unix BSD 4.2 was complete.

42 Software Development Tools

The Objective-C compiler from Productivity Products International in conjunction with the C

compiler was used to implement the Object/Message model prototype for bibliographic citation databases.

The Unix tools Lex and Yacc were used to develop the parser generator, and the tool Make aided in

software development. [PPI85]

-21-

30

4.2.1 Objective-C Compiler

The Objective-C compiler is based on the Srnalltalk-80 Message/Object Model. The spitax for

developing classes in Objective-C resembles the Smalltalk-80 language but differs significantly in that the

class methods are defined using the C-language. The Objective-C compiler is a preprocessor that produces

C source that is then compiled. The preprocessor produces Class and Phylum files that are information

repositories and form the basis for inheritance and encapsulation for the classes.

Smalltalk-80 is the result of 14 years of research and development by the Software Concepts Group

at Xerox PARC. It is based on a software environment contained entirely within a workstation with special

hardware to improve performance by orders of magnitude. The Smalltalk-80 environment solely uses the

Sma1lta1k-80 language and provides the software person w th a repertoire of basic classes. The

environment includes utilities usually provided by the computer operating system, such as the text editor,

compiler, and debugger. The environment makes extensive use of graphics windows, pull down menus,

and a pointing device so the user can work on several views of his work in progress. To change text under

i isoftware development, the user points at the line, edits t, ssues the compile command, removes syntax

errors, tests the software, and then compiles and links the new software into the system. All this is done

without changing "modes" for editing, compiling, filing or executing;

The Objective-C compiler is different in that it is one of the many tools the software developer can

add to the utilities offered by the operating system. I: is available in the VAX VMS operating system

environment as well as computer systems with the Unix BSD 42 operating system. It is is a preprocessor

to the C compiler and adds the basic Smalltalk-80 concepts of classes, objects, messages, encapsulation and

inheritance. Objective-C is an object oriented programming language layered on top of C and allows one

to use it in addition to the existing software and hardware.

Diagram of Compilation Units[PPI85]

Objectiue-C
_Source

C Preprocessor

Class
Librarg

-23-

32

Objective-C Class Libre:ries

Included with the Objective-C compiler package are the Basic Class Librar;), and the Foundation

Class library that establish the root of the hierarchy of reusable classes from which classes for the specific

application are developed. Classes developed for the application inherit properties of classes between the

root and itself. The hierarchy of classes provided with the Objective-C compiler are presented graphically

in appendix A.

The Basic Library contains the classes Nil, Object, Array, Id Array and String. The root of the

inheritance hierarchy is class Object that points to the Nil class. Every object inherits all the methods and

instance variable available in class Object. Class Array is detailed to give an idea of the methods this class

supports. Array is a superclass of several classes that support indexed instance variables. It has an

instance variable capacity that records the units of elements of the array. Methods are defined for instance

creation with n-elements that may be initialized from an argument list or not. Methods are also defined for

copying, inquiring on capacity, printing to an I/0 device, comparing and hashing, and notifying on bounds

violations.

The Fotmdation Library contains the classes Assoc, AVLDict, AVLTree, Bag, BytArray, Cltn,

Dictionary, Int Array, Chn, Dictionary, Int Array, OrdCltn, Point, Rectangle, Sequence, Sets, Stack and

Unknown.

-24-

33

Diagram of Hierarchy of Classes in Basic and Foundation Library[PPI85]

\

cDAbstract Ripercless

Easily Convertible
(es loArroy, Orocttn,

as Set as Dag)

contains In instance of

works 4itri

PaSiO Libncry (Flynn Prinitive)

Manorial tlasns (Pnyirri =Ccilactitn)

Founclitica Classes (Phylum = Geometry)

-25-

3 4

The implementer of an Object/Message application must be familiar with the available classes to

appropriately use the inheritance properties inherent in the class hierarchy. In the prototype

implementation, the class Object was used. In the discussion of future work in Chapter 7, the development

of other classes are described to support the task of creating consistency in the heterogeneous bibliographic

citation database.

4.22 Unix Tool: Lex

The Unix tool, Lex, is a program or module generator. The basic model for Lex is based on the

theory of regular expressions[Aho74]. It generates a module that is a deterministic finite state automaton.

The input to Lex is based on user specified rules that are in the form of regular expressions. Regular

pressions are rules for specifying character strings to be matched and include operator characters to

account for repetition of strings, optional or required occurrences of strings, and the ordering of strings.

The user may associate a procedure with a rule so further processing is done when a rule is matched. For

example, if a rule in the form of a regular expression expects a number, the associated procedure may

verify that the number is in an expected range and fiag an error if it is not valid[Les75]. Lex generates the

module that does lexical analysis on the input character stream consisting of the detail information

associated with a data tag in a bibliographic citation. The tokens and optional values are passed to the

parser.

4.2.3 Unix Tool: Yaw

Yaw is a tool that generates a program or module called the parser. Yacc is based on Context Free

Grammars using Backus-Naur Forrn(BNF) descliptors to specify the parser that accepts the language. The

formal discussion is found in [Aho74] and a user's manual in [Joh75). The input to Yacc are user specified

gramrnar rules and optional procedures to be invoked when the grammar rule is recognized. The parser

includes a call to the lexical analyzer that passes tokens and optional values recognized from the input

character stream.

-26-

The parser does a syntactic analysis and does the associated actions if the input satisfies the grammar rule.

For the prototype the grammar rules include all the legal variations in the detail inZormation for a data tag

in a bibliographic citation.

4.2.4 Unix Tool: Make

The Unnc tool Make is a software management tool that allows dependencies to be specified by the

user among software modules. Changes to a source file are automatically detected and trigger the

appropriate actions specified in the dependency rule. For example, modifications to a source file could

trigger recompilations of other dependent source files.

43 Summary

The software prototype was developed in the Unix BSD 4.2 software environment, using the Unix

tools Lex, Yacc, Make and the Objective-C compiler. The C compiler was used to develop the software.

The next chapter discusses implementation of the prototype and how the tools are used in the

implementation.

-27-

36

Chapter 5:

Prototype Implementation

This chapter introduces the basic data abstraction mechanism in Objective-C, the class. A prototype

for pmcessing heterogeneous bibliographic information is described to show how the abstraction is used in

program design and how it is used and implemented in Objective-C. A system overview that details the

major steps in producing the prototype is diagramed.

Lex Specification File

LOH I i ins

Mout
datit

Vet c Specificotion File

Yacc I----4gyperse I

(no t e0

Main Program

System Overview of Prototype Implementation

-28-

3 7

Claes
Librani

5.1 Sources of Data

The source of data could be the result of a session by a user at a terminal making queries of an on-

line system such as the Dialog system that involve the search of bibliographic citations on a topic. The

output is usually in the form of a disp' 'y of the retrieved citations and may be followed by a more complete

printout of the citations. In our case, the facilities at the LLNL Technology Information System (TIS) were

uSed to obtain bibliographic citations on the subject of "Computer Gateways and Networks" from the six

following on-line database services: DTIC/DROLS-TR, DIALOG NTIS FILE 6, BRS, DOE/RECON,

NASA/RECON, and SDC/LIBRARY and INFORMATION SCIENCE ABSTRACT. An on-line session

with each particular database Service was used to capture the information into a local file. The citations in

the local file was translated into the TIS standard form for bibliographic citations. The six local fi'ds were

then merged into a single file so that post-processing analysis could be done on a single file. A sample of

the merged file is included in Appendix D.

Each bibliographic citation consists of an average of twenty fields of information. Each field begins

on a new line and consists of a data tag delimited by left and right angle brackets (<;>) and ending with the

descriptive information. In database terminology, one can consider the data tag as a field label and the

desciiptive information as the field detail.

5.2 Reformatting the Detail Information for Consistency

On closer examination of the bibliographic citations in the merged file one finds similar types of

information may be represented in differing formats if they corte froM different database sources. There

may be varying formats within a database for items corning from different publication types. For example,

"<DATE> 1985." appears in a BRS/National Library of Medicine Database record, whereas; "<DATE>

Aug 1984" appears in a DIALOG NTIS FILE 6 citation. Another problem iS that "<TITLE> PLURIBUS

SATELITE IMP DEVELOPMENT MOBILE ACCESS TERMINAL NETWORK" appears in upper-case

in the DTIC/DROLS-TR citation but "<TITLE> An on-line director), of databases for material properties"

appears in lower case except for the first word in the NASA/recon citation database. One can make the

observation, however, that similar "classes" of information occur in bibliographic eitaticns.

=2.9= 38

The task of reformatting the detail information for consistency is a complex job. The detail

information from different database sources may appear with a different data tag; An example is

"<TITLE> Post-processing of Bibliographic Citations from DOEJRECON, NASA/RECON, and

DOD/DROLS. Revision 1." from the DIALOG NTIS FILE 6 whereas the same citation in the DOE/recon

database has "<TITLE(MONO)> Post-processing a Bibliographic Citations from DOE/RECON,

NASA/RECON, and DOD/DROLS. Revision 1." The task of consistency may include a cross correlation

of information. If the title is not available with the <TIME> data tag, the information may be available

with the <TITLM(MONO)> data tag. Hence a duplicate may be detected and removed. Typically, one

may request a yearly count of articles written on a subject to asceitain the emerging importance of research

in the area. We pointed out in Chapter 2, they estimate that thirty-five percent of the bibliographic citations

are duplicates[Ha183] and so the accounting of duplicates is important.

5.3 Program Design Abstractions

Consider the merged file as a data abstraction called in-stream, and the data abstraction called out-

stream that will contain bibliographic citations in a consistent format. We will need procedural

abstractions that indicate when in-stream is empty, or determine the next data tag and data field pair. We

can consider each data tag and data field pair as an abstraction. Hence, we can arrive at abstract data types

for "date", "title", "author", and etc. that are based on the data tags found in the merged file.

The <DATE> abstraction is presented with details for its implementation. The bibliographic data

tags such as <DATE>, <AUTHOR>, or <TITLE> are handled as left context operators. They trigger

environments that are very dissimilar. On closer examination, the information associated with <TITLE> is

considered as a string, whereas the information associated with <DATE> is considered on a word basis,

where a word is any nonempty sequence of alphanumeric characters. Adjacent words may be separated by

non-alphanumeric characters as space, punctuation, or newline. Hence thc lexical rules and actions must

be specified separately for these two different environments. In looking at the <AUTHOR> and <DATE>

detail information, the parser rules and actions must be specified individually also. An author June E.

Smith has a first name of "June", whereas June should be handled as the sixth montn if it is a date.

-30-

39

A clisc.ussion on handling of left context sensitivity is described in the Lex reference [Les75]. Once the data

tag has been identified, then separate lexical and parser routines associated with Lex and Yacc rules are

called to process the information. We can think of Lex and Yacc as procedural abstractions in the

development of our prototype class. The Unix tools Yacc and Lex produce C modules of advanced

algorithms in a convenient form that can be easily integrated into the prototype application program These

program generators do special jobs based on user specifications that are easy to update. Yacc produces the

module "yyparse" and Lex produces the module "yylex". The user can insert C code before, within, and

after the call to either module to add a large amount of flexibility. The modules generated are special

purpose and have excellent performance in terms of time and space. They save the user from writing their

own C code and hence frees the programmer from details that are conceptualized as procedural

abstractions.

5.4 The Prototype

To show the ease in creating Objective-C classes, the prototype for the Date class is described. The

prototype consists of the Lex and Yacc specification files, the Date class data abstraction, and the main

program module. The tutorials on Lex and Yacc were helpful in developing the specification files[Be178].

5.4.1 Lex Specification File

The general format of Lex input is:

{definitions}

%%

{rules}

%%

{user routines}

,

-31- 4 0

The definition section is:

%{

#include "objc.h"

#include "y.tab.h"

#define MON(x) yylval.lex=x; return MONTH; }

.(N,Collection,Primitive)

%)

The include file "objc.h" contains most of the standard definitions for the user of the Objective-C

compiler. The file contains various C types such as STR for string, SEL for selector, BOOL for boolean,

IOD for 1/0 descriptor and SHR for the shared part of an object. The include file y.tab.h is created by Yacc

and contains the tokens used for communication between the lexical analyzer and the parser. The macro

MON(x) is defined to assign a value to yylval.lex that is returned to the parser. Values returned by the

lexical analyzer and associated action procedures are integers by default. The rules to Yacc can define

other types that the parser tree handles so the stack properly carries out the reduce and shifts to determine

an accepting state for the statement being parsed. The Yacc discussion covers the union of types that

account for the suffix "lex". The last statement is an Objective-C declaration for the Phyla flies.

The rules section consisting of regular expressions is:

Unan("."juary)? MON(1);

[dD]ec("."lember)? MON(12);

-32-

41

[0-9] {yylvallex = yytext[0] - '0' ; return DIGIT;}

[] f ; /* delete blanks /

return EOL; }

{ return EOL ; }

In the regular expression 'ejTjane."luary)?', the months are allowed in different forms, i. e. jan, jan.,

january,Jan, Jan., or January. The macro MON(x) is the action statement where the value returned is an

integer, that is 1 for January, 2 for February, and etc. The value is stored in yylvallex, and MONTH is the

token returned. The characters 0 through 9 are recognized by the regular expression [0-9] and the action is

to return the integer value for the character representation and DIGIT for the token. The regular expression

[] deletes blanks since there is no action statement. The regular expression "tn" recognizes end-of-lines

and returns the EOL token. The regular expression "." recognizes any other character and the action

statement returns the single character.

The last section defines procedure "date(month,day,year)" for checking that the month is in the range

1-12 and the days for a month are correct. The leap year is taken into account on the days of a month.

Terse error warnings are included that could be changed to more sophisticated error recovery actions. See

Appendix C for the details. Hence the lexical analyzer module, yylex, should be able to recognize the

tokens in the eight variations for "date" that are tabulated in Chapter 2.

5.4.2 Yacc Specification File

We now describe the specification file that is input to Yacc to generate the module yyparse. The

general form looks like:

declarations

rules

-33-
42

programs

The declaration section is:

%{

#include "objc.h"

(N, Collection, Primitive)

extem id clateObj;

96}

%union

short lex;

id obj;

%Start prog

%token<lex> DIGIT MONTH

%token<lex> EOL

%type<lex> number year day

%type<obj> DateStmt

In the declaration section we have the include file objc.h and the phyla declaration that were

described in the previous section on Lex. The external declaration of the instantiation of the Date class,

dateObj, is required since dateObj is created in the main program. The union statement defines the two

data structures on the parser tree, the "lex" integer data smicture and the Objective-C "obj" id data

structure. The goal symbol, prog, is defined by the %Start statement, and the legal lexical tokens that yylex

-34-

recognizes are DIGIT, MONTH, and EOL. Number, year, and day are parsed by yyparse and have the

lex" integer data structure. The DateStmt has the "obj" id data suucture.

The rules section is:

%%

prog: Date Stint EOL { exit ();} ;

Date Stmt: MONTH day ',' year

date ($1, $2, $4);

$$ = [dateObj mo: $1 da: $2 yr; $4];

(dateObj print];

day: number;

year: number;

number DIGIT number DIGIT {$$ = 10 * $1 + $2; };

The rules section specifies the BNF grammar for parsing the legal forms of date. The date procedure

checks that the number of days is within the correct range for the month, with leap year taken into

consideration .

The following statement:

$$ = [dateObj mo: $1 da: $2 yr: $4];

stores the month, day, and year values in the object, dateObj. The Objective-C message expression is

contained between the- Pair of square brackets([...]). The message is sent to the receiver, dateObj. There

-35-

4 4

iare three keyword selectors, mo, da, and year, that consist of a string of characters ending n a colon

character. The arguments to the keyword selectors are $1, $2, and $4 that are obtained from the parse tree.

This is an invocation of a method defined in the Date class and is a behavior in addition to the instance

methods that Class Date inherits from the Object Class.

[dateObj print];

The print method is defined in the Date class and defines a behavior for printing the values stored in

the dateObj object for month, day and year. The user simply invokes the print method and is not

encumbered by the details of the data structures of month, day, or year to print the information correctly.

In contrast, the Fortran programmer must know whether the month, day, or year may be in ascii, octal, or

integer format to select the proper conversion specification in the "Format" statement. The proper

definition of the methods in a class should encompass the create, modify, or reply so that the user's

requirements in working with the class object is complete.

The program section is the last section and contains an error diagnostic that prints a warning to the

user if the input can not be parsed by the grammar rules contained in the input specification file for Yaw.

One may observe at this point how terse the software is to do all this work. The extraneous characters for

space, /, and variations in the date format are handled with a minimum amount of software. The values for

month, day, and year are stored as instance variables into the object, dateObj, through the method defined

within the class Date, and the print operation is easily invoked since the details are encapsulated as a

method in the class Date.

5.4.3 Date Class

The Date class is defined in the source code file, "date.m". The declaration section has the

Objective-C include file, objc.h, and the Yacc include file, y.tab.h. Next, the declaration for ascii

representations for month is included for the print method.

=36-

45

The following statement:

= Date:Object (N,Collection,Primitive)

reflects that the Date class inherits properties from the Object Class, and the Date class will be included in

the writable phylum file "N". Also, the Date class may use the classes in the Objective-C

Collection, and Primitive; The instance variable are declared to be integer for month, day, and year; and

are called mon, da, and yr respectively. The first method prefaced with "-mo: ..." stores the values in the

instance object. The next method denoted by "-print ..." prints the date to the terminal. The print method

will test for the default values of 4 and vary the printout. The three sample printout forms are:

1 May 1985

May 1985

1985

5.4.4 Main Module

The main program contained in the file, "maln.m", begins with the include file for the C compiler

standard 110 library, stdio.h, and the Objective-C include file, objc.h. The phyla declaration statement for

the main program follows. The externals are declared in addition to the instance object, dateObj. The

main program sets the output to be the terminal that is the Unix standard output device.

The statentent:

dateObj [Date new] ;

creates the object for the Date class. Since the method "new" is not defined in the Date Class, the method

is inherited from the Object Class. The prompt ">" is printed at the terminal and then the input is expected

from user at the terminal so that it can be parsed and have its values for month, day, and year stored into

the date object just created. The print method is then invoked to verify the proper values are stored in

dateObj for month, day, and year. The last two statements declare the classes and phyla that can be used in

this application program.

-37-
4 6

Chapter 6

Sununaly and Results:

The intent of the prototype implementation is to provide a programming cxample of the Class data

abstraction mechanism of Objective-C as applied to the Date class to obtain data consistency in varying

forms of dates that are contained in bibliographic citations. Through a simple example, features of the

abstraction mechanism in Objective-C have been presented. The Unix tools, Lex and Yacc were used to

develop the procedural abstractions, yylex, and yyparse, that do the lexical analysis and syntactic analysis

on the varying date forms. Eight variations of dates consisting of month, day and year were established in

the dateObj object for the Date class. With the instance variables set to specific values, the print method

could be invoked to take care of the task. The private data and daia access methods are encapsulated

within the Date class, and requires that the user communicate through messages to the object to elicit the

behaviors desired.

The Date class is an elementary example to show how other classes for the bibliographic citation

database can be developed for accomplishing data consistency in the numerous fields in a bibliographic

citation. The Date class can easily be extended to included more methods, categorized as setting, inquiring,

performing arithmetic and printing.

Setting:

1. -setmo: aMonth set the month

2. -setda: aDay set the day

3. -setyr: aYear set the year

-38-

4 7

Inquiring:

1. -getmo: aMonth reply the month

2. -getda: Day reply the day

3. -getyr: aYear reply the year

Performing Arithmetic:

1. -julian reply the Julian day

2. -dayofyear reply the nth day of year

Printing

L -printmo reply the month

2. -printdy reply the day

3. -printyr reply the year

The goal is to develop a comprehensive Date class to simplify the task of constructing reliable

software that is easy to understand, modify, and maintain. This Date class will be part of the Class Library

that is accessed by application programmers who will rely on the skill of the designer who develops the

abstraction. The classes must be defined such that the behaviors of the class of infonnation is fully defined.

These include the create, modify and reply operations. In the event that additional behaviors are necessary,

the concept of abstraction mechanisms in the programming language as Objective-C will guarantee that

software will not have to be re-examined or re=written because of the change.

We briefly describe how the <AUTHOR> and <TITLE> classes can be defined and used in the

application for data consistency in heterogeneous bibliographic citation databases. The main program is

expanded to examine the in--stream of data and look for the "<AUTHOR>" or "<TITLE>" data tag. This is

easily done since the data tags are enclosed in the left and right angle brackets. The characters following

the right angle bracket are saved in a buffer until a left angle bracket is detected. This barer of characters

is then passed as data input to the parser developed for the particular data tag information.

-39-

48

In the TITLE data tag the Lex specification file will have the action statement convert the text to

upper-case for consistency, and then will store the title into the object

yylval.obj = [String str: yytext];

return STRING;

The Yacc specification file will contain the action statement:

$$ = [dtleObj str: $1] ;

In the case of the AUTHOR data tag, the buffer of characters captured after detecting the Author tag

is passed to the Author parser that has BNF specifications to handle the variations in author uames. The

author list could be saved in the Set class. The creation of an Author object could include an initialization

that would give a wild card character like "*" for the first or middle name in cases where the names are

missing from the input stream. The methods defined for the author class could treat the names as wild

cards when a match is required.

The next logical development is to define a citation object that contains the Author, Title, and Date

Objects as a related triple.

extern id String, Set; id citationObj;

citationObj = [self with: 3

[dateOkj str];

[titleObj str];

[authorOjb str];];

Methods could be defined to create, add, delete, or modify a citation, in addition to printing the citation in

"pretty" forms for easy user viewing.

-40-

49

The prime idea in defining classes for the heterogeneous bibliographic citation databases is to present the

application programmer with abstractions that handle the data types involved, and include all methods to

process the abstract data types. Hence the objects are the entities that are handled by the application

programmer to reduce the details that must be remembered. The particular class should characterize the

behavior of the data entirely. If not, additional methods may be added to the class definition. Indeed, even

if this is done, software that has been written based on the former class definition may not have to be

rewritten unless it accesses the new features in the class. The underlying physical structure of the program

is taken care of by the physical interfaces used by the Objective-C compi:er. The basic actions in

programming the application are assignment statements that create objects and invocations of class

methods through messages to the objects to exhibit behaviors.

-41-

50

Chapter 7

Discussion and Future Directions

In recent years a variety of powerful generic tools have been created. Database Management

Systems(DBMS) and Spreadsheets are examples. They gain their power from the ability to operate on

various data. They provide the generic operations of create, modify, and output. We have attempted to

create the tobl for data conversion. This study was iestricted to bibliographic citations to see how far the

i&a of a generic library tool can be extended: The development of the generic library tool requires the

definition of classes which the application programmer incorporates into user software. The concept of

abstract data types via classes can be extended to Database Management Systems. If one considers the

relational model, then the relations in the form of tables can be considered the data structure of the class.

The operations of retrieve, update, and append with qualifiers can be considered the class methods. This

abstraction is a convenient one for the application programmer since tables of information are a common

occurrence. But a detail look at the physical implementation of the data structure may be complex. The

storage and access mechanisms may be based on hashing algorithms if the data are sparse and have a

balanced distribution. B-trees may be used with linked lists for fast searches. Here the user is relieved of

the complexities that ar P. left to the Database Management System implementers. To access the relations

the user relies on the query language that allows operations on the relations. In this sarne regard, the person

developing the classes for an Object Oriented application must provide the application programmer with

the necessary classes to do a job. The classes must be general enough to handle application programs that

have not yet been defined. This is what a good Database Management System provides, and s what the

class library for the application should provich.:. Of course, Database Management Systems are always

being enhanced to do a better job for the user, and it is expected that the class library will be improved with

-42-

51

time. What is important is that the user will not have to rewrite any software that has bcen developed.

Evert if the underlying physical structure is changed to improve speed or space, the user need not be

concerned, and all the benefits will be automatically gained. One can now readily understand the strength

in using abstractions. Through Object Oriented Programming the abstraction mechanism found in

Database Management Systems and Spreadsheet.% can now be extended to prOgramming languages through

abstraction mechaniSms provided in languages like Smal Italk-80 and Objective-C;

This project has demonstrated the feasibility of establishing data consistency in heterogeneous

bibliographic citation databases through data abstractions, called classes; Futore work involves specifying

and implementing the full set of classes for this application. With the classes in place, the application

programs can be written to further the data consistency goaL

We have discussed the bilio-citation object consisting of the title, author, and date objects. The

objects associated within the citation object should be expanded to include the necessary elements for

iddntifying a bibliographic citation. This requires the establishment of a canonical form for a bibliographic

citation. A study of the bibliographic citation format from different sources shows that the data tag names

are diverse and many are singular. For example, the DOE/RECON database uses "PAGE NO5. 17",

whereas the DTIC/DROLS-TR has ";c.PAGINATION> 30P". Goldstein and Prettyman have proposeda set

of 36 fields for the citation canonical form and it appears in chapter 2. They propose tWo character data

tagS, such as PG for the number of pages in the reference. Their canonical form is based on bibliography

preparation. The data fields for the general case needs to be studied and proposed; On a cursory glance,

the expanded canonical form should include "AB" for abstract, and "KW' for keyWord detcriptorS. We

note singular data tags that probably are only meaningful to the local bibliographic database such as

"<LIMITATION CODES5 11% can be excluded from the canonical form of the citation. With the data tag

and associated data elements defined for the canonical form of a bibliographic citation, the definition of

classes for data consistency can proceed. The Date class can be re-used for the journal date, publication

year, copyright year-, and the meeting date. The definition of a Location class is appropriate for the medting

location, publication location, and author location. This class should access an abbreviation dictionary to

produce a consistent form of the location.

-43-

52

If the location is listed as London, then London, England should be substituted. The location US, U.S.A.,

or United States should be made consistent in the same fashion. WarningS should be included for data not

found in the dictionary, so that it may be updated with new entries. The standardization of publication

titles can be added to a Source ciass. Certainly, the conversion for case consistency in a character swings,

and the expansion of abbreviations should be included in the class methods: Alternate names for people or

institutions could be accessible from a dictionary to further aid in, data consistency. We note that the

Dictionary class is available in Objective-C and can be incorporated into an class.

A future expansion should include the post-processing tasks in terms of the classes defined in the

application tool library. Methods could be included to "pretty-print a bibliographic citation", to analyze

bibliographic text, to display the citations on the CRT screen; to plot the statistical information on a graph,

and to do cross-correlations on the data fields. The convenient tools of Unix can be incorporated into the

classes since Objective-C is designed with the use of Unix tools in mind. We have seen how the Unix tools

Lex and Yacc were incorporated into the Objective-C program.

The procedure of establishing data consistency in a heterogeneous bibliographic citation database

through the definition of abstract data types can be extended to other heterogeneous databases. The

reStriction ic that the informafion in the heterogeneous databases derive from a common base, as in

bibliographic citations. Hence for a relational database where a relation iS employee, a field in the relation

is name, and its detail information is John Jones, the data tag could be <employee.name>, and the detail

field would be John Jones. The existence of a data tag and and an associated detail field in the database

establishes the reuse of the data abstractions created for the bibliographic citation database.

-44-

References

[Aho74) Aho, A. V. Hoperoft J. E., The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, Massachusetts, 1974.

[Be178] The Bell System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2., American

Telephone and Telegraph Co., pages 2155-2176.

[Bo184] Bollinger, W. A., Hampel, V. E, Harrison, I., Murphy,T.P., Post-Processing of Bibliographic

Citations from DOEIRECON, NASAIRECON, and DODIDROLS, Lawrence Livermore

National Laboratory, UCRL-89995 Rev. 1, August 1984.

[Bur84] Burton, H. D., Integration of an Automated Library Support System with an Intelligent

Gateway, Lawrence Livermore National Laboratory, UCRL-91383, August 1984.

[BuH84] Burton, H. D. and Hampel, V. E., Integration of Common Command Languages with

Intelligent Gateways, Technology Information System, Lawrence Livermore National

Laboratory, 1984.

[Cua841 Cuadra, R. N., Abels, D. M., Wagner, I, Directory of Online Databases, Cuadra Associates,

Inc., Santa Monica, Ca., 1984, Vol. 5, No. 3, Spring 1984.

[Cox84] Cox, B. J., "Message/Object Programming: An Evolutionary Change in Programming

Technology", IEEE Software, Vol. 1, Number 1, January 1984; pp50-61.

[Eag85] Eagles Project, Electronics Engineering, Engineering Research Division, Lawrence Livermore

National Laboratory, Livermore, Ca., 1985.

[Ha183] Hall, J. L. and Brown, M. J., Online Bibliographic Databases: A Directory and Sourcebook,

Third Edition; Aslib, London, 1983.

[Ham79] Hampel, V. E, McGmgan, S. K, Gallo, L. E, Swanson, J. E., The LLNL "Meta-Machine",

Fourth Berkeley Conference on Distributed Data Management and Computer Networks; San

Francisco, California, August 28.30, 1979; Lawrence Livermore National Laboratory, UCRL-

-455 4

83064, May, 1979.

(Ham85] Hampel, V. E., "TIS, The Intelligent Gateway Processor", Proceedings of the Eighteenth

Annual Hawaii International Conference on Systcm Sciences, 1985.

[0o183] Goldberg, A. and Robson, D., Smalltalk-80, The Language and its Implementation, Addison-

Wesley, New York, 1983.

[Go1841 Goldberg, A. Smalltalk-80, The Interactive Programming Environment, Addison-Wesley,

New York, 1984.

[0o185] Goldstein, C. M. and Prettyman, M., Prozessing Downloaded Citations", Lister Hill National

Center for Biomedical Communications, National Library of Medicine, Bethesda, Md., 1985.

[KeP84] Kemighan, B. W., Pike, R., The Unix Programming Environment, Prentice-Hall Software

Series, Englewood Cliffs, N.J. 1984.

[Joh75] Johnson, S. C., Yacc: Yet Another Compikr Compiler, Computing Science Technical Report

No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975.

[Les75] L-esk, M. E. and Schmidt, E., Lex- A Lexical Analyzer Generator, Computing Science

TechMcal Report No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975.

[Lis74] Liskov, Barbara, Zilles, S phen, Programming with Abstract Data Types, Proc. ACM

SIGPLAN Conf. on Very High Level Language., SIGPLAN Notice 9,4 (April 1974) 50-59.

ELis77] Liskov, Barbara, Snyder, A., Atkinson, R., and Schaffert, C., Abstraction Mechanisms in CLU,

Comm ACM, 20, 8, August 1977, 564-576.

[PP1851 Objective-C Reference Manual; Productivity Products International, Sandy Hook, CT, 1985.

[Sha84} Shaw, Mary, Abstraction Techniques in Modern Programming Languages, IEEE Software,

Oct. 1984.

-46-

55

Appendix A

Hierarchy of Objective-C Classes - @class, @phyla [PPI85][Eag85]

AVI,Txee
othas

AVI:Dee

Object
OC1Uii

_ Object
Ophyla

Primitive

Ophyla
Collection
Primitive

Cita
Oc

Id Array
Sequence

Ophy la
Coll.ction
Primitive

AVLDitt
LVDkt
Artat

Sequence
Ophyla

Collection
Primitive

OrtICItn
adiau

ordcitn
Id Array
Sequence

Ophy
Collection
Primitive

Set
Oclau

Set
Id Array
Sequence

OpliVli
Collettion
Primitive

Stackad=
sena
IdArray

Dictionary
OdlUi

Dicitionary
IdArray
Sequence

_ Assoc
Ophyla

Collection
Primitive

Bag
GelUi

Bg
IdArray
Sequence
IntArray

Ophyla
Collection
Primitive

Sequence
Ophyla

Collec t io n
Primitive

Hic.rarchy of Objective-C Classes (continued)

Object
octass

Objett
aphyla

Primitive

ASSOC
Game

-Asso6
OpyIa

Collection
Primitive

Array
Wass

Array
Ophyla

Primitive

Point
Oc lass

Point
Ophyla

GioMitry
Primitive

Rectangle
Odes.

Rectangle
Point

OphYli
Geometry
Primitive

-48-

BytArray
Oclau

BytArray
OphYle

PriMitive

IdArray
Odom;

IdArray
Ophyla

Primitive

IntArray
(Ulan

IntArray
Ophyla_

Primitive

57

Object
adult String

Object admit _ _
Opby la_ . String

Primitive aptly la.
Primitive

Hierarchy of Objective-C Classes (continued)

Sequence
Oc. !us

Sequence
Id Array

Opby
Collection
Primitive

Unknown
OCW5

. Unknown
Ophyla_

Primitive

-49- 58

ppendix B

Objective-C Base Tree - methods [PPI85][Eag85]

liet
free
Initialise
ndsVarSise
new
poseAs:
redProm:

uGraph:
awake
capacity
thu
compare:
cony
deepCopy
describe
doesNotRecognise:
MON AVLTree
free key:

idofsim addContentsTo:
isCopy0f: addKeysTo:

find:
laKind0f: free
isMemberOf: Mural:to:
Wenn: IsCopy0f:
Mime key
notEqual: key:
notimplemented printOn:
notSame:
perrm:
perform: with:
perform: with: with:
print
printOn:
printStrinr,
respondsTo:
self
shallowCopy
shouldNotImplement
show
size
storeOn:
itr
subclusPesponsibility
superCius

-50-

59

Object
free

nclxVarSise
new
puede:
rescArroin:

aeGraph:
awake
capacity
class
compare:
copy
dupCopy
describe
douNistRecognise:
error
free
hUlk

isCopy0f:
lsEqual:
lsKind0f:
isMember0f:
isSame:
name
notEqual:
notImpleznented
notSame:
perfOrna:
perform: with:
pulorm: with: with:
print
printOn:
printString:
respondsTo:
ailf

shouldNodmplement
show
Its.
storeOn:
sir
subclassReeponeibility
superClass

,

Objective-C Base Tree (continued)

Cltn
new
new:
with:

add
addContents0f:
addContentsTo:
uBag
asIdArray
asOrdCltn
USet
conWne:
iiicItElement
expand
And:
fres
hash
IsCopy0f:
isEnapty
isEqual:
ofiketOf:
printContutsOn:
printOn:
remove:
removeCoutents0f:
else

-51=

AVLDict
add:
addContentsTo:
asidArray
itKey:
atKey: put:
contglis:
find:
isCopy0f:
key,
printContentiOn:
remove:
else
values

OrdCltn
add:
addContentsTo:
at:
boundsError
find:
findMatching:
findSTFL:
firstElement
liCopy0f:
lutElement
lanai:du
remove:
else

Dictionary
with:

associationAt:Set atKey:
add: atKey: put:
addContentsTo: includesAssocsation:
contains: includesKey:
difference: keys
expand valuu
filter:
find:- Bag
findElementOrNil: new:
intersection:_
occurrencesOf: Wd:
remove: add: withOeturrendes:
replace: expand
size free
union: includes:

occurrencesOf:
printContentsOn:
remove:
size

60

Stack
add:
depth
emptyErr
ieCcipy0f:
lastElement
pop
push:
size
swap

Object
free

ndxVarSize
user
poleAs:
readProut

UGraph:

CipUitir

comput:
copy
doesNotRuognite:
deepCopy
describe
error:
free
hash
Id OfSTR:
bCopy0f:

kiOndOt
isMeMberOt
IsSamm
name_
notEAnah
notImplemented
notSame:
perform:
perform: with:
perform: with: with:
print-

printString:
reepondiTo:
self
show
ihallowCopy
shouldNotImplement
size
storeOn:
str
suloCiassResponsibility
superClus

Objective-C Base Tree (continued)

Array
new:
ndiVarSise
ndxyarType
with:

iiIdArray
boundiVioiation:
capacity
capacity:
copy
describe
hash
Is Copy:
isEqual:
printContentsOn:
printOn:
size
bort

-52-

BytArray
ndxVarSize
=bele:Type
hi*:
iptintf:
sir:

mint
uFloat
uLong
charAt:
charAt: put:
compare:
COMPireSTR:
teultiti --
contatSTR:
describe
hash
leCopyOt

IsEqualSTR:
printContentsOn:
urt
err
str:

IdArray
ndiVarSirs
xidiVarType
with:

add:
addContentsOf:
addContentsTo:
it:
et pUt:
containi:
describe
eacitElement
find:
findMatchInv
freeContents
hash
laq nal:
oittaf:
oiThotMatching:
ofThetMatchingSTR.:
printContentsOn:
remove:
sise
sort

IntArray
ndxVarSize
nctrVarType

describe
haih
ihtAt:
rntAt: put:
intAt
isCopyOt
IsEqual:
PrintContentsOn:
sort

Objective=C Base Tree (continued)

Objett
free

t11arSlie Amine
new key:
poecU: key: value:
readFrona:

compare:
asGraph: hMh
awake lefog:
capacity key
class ka:
compare: printOn:
copy str
doesNotRecognise: value
deapCopy value:
dCsMibe
error: Point
free_ fromUser
huh x: y:
id0fSTR.:
isCopy0f: dist:
isEqual: dot:
isKind0f: isAbove:
IsMember0f: liBelow:
Mame: liCopy0f:
name U&Inal.:
notEevIg: Istaft:
notruiplentented la:tight:
notSame: hut
pedona: leni0b_
perfona: with: minus:
perform: with: with: movel3y:
print movel3y: x:
printOn: moveTo:
printString: plus:
respondsTo: printOn:
ailf times:
ihoW X
shallowCOpy x:
shouIdNotIdaplement x: y:
trite y
etoreOn: y:
str
subelassResponsibility
superClass

-53-

62

Objective-C ease Tree (continued)

Object
trio
Min:1U*
ndxruSize
new
poseAs:
readFrom:

uGraph:
awake
capacity

compare:
copy
deepCopy
describe
doesNotRecognize:
error:
free
hash
idOiSTR:
IsCopy0f:
la Eqizal:
liKindOf:
Weather Of:
US&Oui:
name
notEotiO:
notImplemented
notSame:
perform:
perform: with:
perform: with: with:
print
printOn:
printString:
respondiro:
sill
*ha llowCopy -

shouldNotplement
show
size
storeOn:
etr
subclaseResponsibility
superClass

Rectangle
from User
new
origin: corner:
origin:: corner:
origin: extent:
origin:: extent::

bottom
bottom:
bottomCenter
bottomLeft
bottomRight
center
centerX
centerY
contains:
corner
corner
extent
extont:
hash
height
height:
ineetBy::
Intersection:
Intersects:
IsCopy0f:
tactual,:
left
left:-
leftCenter
moveBy:

o6gin
origin:
origin: corner
origin: extent:
printOn:
right
rgiit-
rightQliter
top
top:
topCenter
topLeft
topRight
union:
width
width:

-54-

Object
free
initialise
ndxVarSise
new
poseAs:
readrrom:

Objective-C Base Tree (continued)

Sequence
over:

Ant
free
TICOnrOf:
next
over
mwind

aa . StringGraph:
'wilt ndsVarSise
capacity ndsVarType
class_ new
compare: new:
copy aprintf:
deepCopy str:
describe
doesNotRecognise: uFloat
error: asint
frii asLong

car acityhUh-
capacity:KOISTM
charAt:isCopyOL

IsEguilt -- charAt: put:
IsKindOt compan:
isMember0f: compareSTR:
IsSune: COtleatt
name concatSTit
notEqual: copy
notimplemented describe
notSame: hash
perform: IsCopyOL
;rfOkm: %len: IsEkual:
perfOrm: with: with:
pritZ

ItEcinalSTR:
printOn:

priutOn: Size
printString: ati
flutpandsTo! strcat:

UnknalrarAsrll:

ndxVarTyPe
ely>ulciNtfcr.. -ment
shcw

...4141;,

newClass: Van: onIOD: Text:
: printOn:

daucIassauponsii.-3y capacity
describe
doesNozile..agnise:
iiVarCapacity:

;55-

64

Appendix C

Prototype Sourte Code

LEX Specification File

8inciude "objc.h"
#inciude y;rab;h" _ _ _

idefine_MON(x)4 x ; return MONTH :)

AN, Collection, Primitive)
%)

(JJJau."luary)? MON(1) ;

[fEleb("."1ruarY)? MON(2) ;

(mM]ar(!;r1ch)? MON(3) ;

lah)pr("."Ii1)? MON(4))Way MON(5)
[jJ]un("."(e)? MON(6)
1j,I1uW...110? MON(7) ;

(aA]ug("."Iust-)? MON(8) ;

(SS)eP("."ItETtber)? MON(9)
(00]ct("."10bet)_?_ MON(I0)
EnNlov("."lember)? MON(11)
(dOTec("."lember)? MON(12I ;
[0-9] (yylval.lex yytext(0] - '0' ;

return DIGIT ;
(; /* delete blanks */)

(return EOL ; 1n.n I return EOL ; I

return (yytext(0]) ;) /* return single characters */

IP include "stdio.h"
int noleap [] (

int leap []
0, 31,

(

28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,) ;

date (month,
Oi 31,

day, year)
29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,) ;

int_Maysift ;
daYmin iaieap_(year)_?_leap : noleap ;
if (month < 1 11 month)12)

(printf ("month out of range \n")
return ;

1

if (day <-1-11-day daysin(month1)

(printf ("day Of the mOnth out of range\n")
return :

isleap (year)
(if. (year % 4 ! 0 return (0) ;

".f (Year % 100 !- return (1) ;

If (year % 400 0 ' return (0) ;

return (1)

int , wrap ()
(re: *ta(1);)

=S6=

65

YACC Specification File

41(

Oinclude "objc.h"
w (N, co.ctio PrImItivo) phyla /
extern id dateObj
%)
/union I

/* stack type */
short lex ; /* lexical code /
id ob i 1 an object 'V

/Start prog
Itoken(lex> DIGIT motiTH
ita)enslax> ECM
itype<lax number year day
itype<obj> DateStmt
it

DateStmt- EOL I exit(); /

DateStmts MONTH day ',' year

date (41,-52, 94)
$9 n IdateObj mo: $1 da: $2 yr: $4)

(dateObj print
1

I day MONTH year

date ($2,_$1, 93) t
$t) (dateObj mo: $2-da: $1 $3) 1

(dateObj print I ;

I number '/' n-1,7r '/' number

if (V . * 1900;
date (

$$ La: $? yr: $5) ;

)

I atualoar

dat.
-S da: -1 yv: $7)

d, .tnt I ;

1

number

dite (I,_ I, Al!
9$ 1 dateObj mo: -1-da: -1 yr: $1) ;

[dateObj print)

I MONTH number

date (91, -1, 12) :

$$ 1 dateObj mo: $1-da: -1 yr: $23 ;

I date051 print ;

)

MONTH ,' number

date ($1, -1, $3) ;

$9 (dateObj mo:_51 de: -1 yt: $3) ;

(dateObj print J :

)

day: number

ynar: number

ndMbet: DIGIT_
I number DIGIT

I $$ 10 $1 * 92 : I

III

/Include 7Atello.h*
yyerror (a) /* called for yacc tyntzx error */

. char *A:

)

warning(s, (char *) 0);

char *progname"stdin";
narning(n, tl, t2, t3,-t4, t5, t6,-t7,-t9,_t9) /* print_warning message

char 3, t1, *t2, *t3, t4, t5, t6, t7, et8, *t9;
1

/

)

extern-int-yylineno:
fptintf(atderri "file Is: ", progname); */
fprintf(Atderr, a, tl, t2, t3, t4, t5, t6, t7, te, t9);
fprintf(atderr, " near Iine Od\n", yylinen0):

-57-

66

Date Class Source File

#include "objc.h".
#include "v_.tab.h"
char * MON() = " ","Jan", "Feb", "Mar", "ApL", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ;
= Date:Object (Nt Collection, Primitive)
{ int mon, dy, year ; }

- mo:(int) aMonth da:(int) aDay yr:(int) aYear
(mon = aMonth ;

dy = aDay ;
year = aYear ;
return self ;

- print
(

if (dy>0 && mon>0)
printfr<DATE> %d %s %d\n , dy, MON[mon], year ;

if (dy < 0 && mon<0)
printf("<DATE> %d\n", year) ;

if (dy < 0 && mon >0)
printf ("<DATE> %s %d\n", MON[mon], year) ;

/* insert code for different type of prints to account for defaults*/

Main Program Source File

#include "stdio.h"
#include "objc.h"
= (N, Collectionr Primitive)
extern POOL msgFlag ;
extern IOD yyin, yyout, msgIOD ;
id datéObj ;

main ()

extern id Date, Set ;

msgIOD = stdout;
msgFlag = NO ;

dateObj = [Date new 3 ;

printf (">") ;

yyparse() ;

printf ("end yypnrse\n");

@class (Date, Set,Oltn, 1dArray, Sequence)
@phyla (N, Collection, Primitive)

-59-

68

Appendix D

Merged File of Heterogeneous Bibliographic Citations from Six

Database Sources

<AccEssIoN No., e5129e2: 8506.
<DATABASE SOURCE> BRS/Natianal Library cl Medicine Database
<AUTHORS>_Ellison,j.,M; Wricirff-E-A;
<PAA> Cambridge Hasbito:_. Mossocnusetts.
<TITLE> more than a gateway: the rale of the emergency psychiatry service

In Ihm_communily_mentol health network,
<PUB DESC> Hasp-Community-Psychiatry. 1985 Feb. 36(2). P 180-5:
<LANGUAGE> EN,
<MAJOR_CATEGORi>_COMMUNITY,MENTAL-HEALTHCENTERS:-ag.--EMERGENCY-SERVICE-HOSPITAL.

EMERGENCY-SERVICES-PSYCHIATRIC: ag. INTERINSTITUTIONAL-RELATIONS: MENTAL-HEALTH-SERVICES:
_ ag
<MINOR CATEGORY> ADULT. BOSTON: CASE-REPORT: CATCHMENT-AREA-HEALTH.

CRISIS-INTERVENTION. FEMALE. HDSPITAL-BED-CAPACITY-300-70-499 HUMAN,
MALE_ _MIDDLE,AGE: ROLE. SOCIAL-NORA:or in heloing the emergency unit
build closer relationshibll_wiln_community_agencies is its contract with-
the state to DerfOrm evaluations of oil admissions AO the stote hOlOital
PSy<biotrIc_unit_sereing the catchment area. The emergency unit derforms
triage and provides backup for the agencies._coardinotes_the_management
of multi-ogency cases, and holds weekly educational conferences for agency
staffUstng_case examples. the outhorS illustrate how unit and agency
staff collaborate to ensure continuity of pdtient tarti Author.

<SB> M
<DATE> 1985.
<ISSN:, 0022-1597.
<2/.4> Z1_107.567.875..
<IN> eses_
<ED> 850404.
<NO>_MH17582,__
<ACCESSIOM,NOli;_A147675
<DATABASE SOURCE> DTIC/drols-tr
<TRANSLATION-DATE> Mon Jui-1 13:33:43 PDT 1985 (489098023)
<DOWNLOAD DATE>AAAn_ JM1 _ 1 10:18:29 PDT 1985 (489086309)
<DOWNLOAD FILE NAME> gate
<FIELDS-AND-GROUPS>-17/2
<ENTRY CLASSIFICATION> UNCLASSIFIED
<CORPORATE AUTHOR> BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA
<TITLE>-PLURIBUS-SATELITE-IMP-DEVELOPMENT MOBILE ACCESS TERMINAL NETWORK.
<TITLE CLASSIFICATION> UNCLASSIFIED
<DESCRIPTIVE NOTE> OUARTERLY TECHNICAL REPT. NO. 33; 1 FEB-30 APR 84.
<DATE5_MAY__, 1984
<PAGINATION> 30P
<REPORT-NUMBER> BBN-5774
<CONTRACT NUMBER>-MDA903-80-C-0353,-N00039-81-C-0408
<REPORT CLASSIFICATION> UNCLASSIFIED
<DESCRIPTORS>-eSATELLITE COMMUNICATIONS: 'TERMINALS: NETWORKS: SHIPBOARD;

ACCESS; MOBILE_; WORK
<DESCRIPTOR CLASSIFICATION> UNCLASSIFIED
<IDENTIFIERS>-PLURIBUS SATELLITE..PACKET NETWORKS. AHPANET. GATEWAYS
<IDENTIFIER CLASSIFICATION> UNCLASSIFIED
<ABSTRACT> THIS QUARTERLY TECHN1CAL_RERORT OESCRISES WORK ON THE DEVELOPMENT
OF_PLURIBUS SATELLITE IMPS: AND ON SHIPBOARD SATELLITE COMMUNICATIONS.
(AUTHOR) -

<ABSTRACT CLASSIFICATION> UNCLASSIFIED
SINITIAL.INVENTORY> 12
<LIMITATIOm c00Es1

.<SOURCE CODE> 060100
<DOCUMENT_LOCATION> NT1S
<GEOPOLITICAL CODE> 7.508
<TYPE-COCE> 4
<ACCESSION WO-> 1162.508
<DATABASE SOURCE>_DIALOG NT:L11_rILE_4
<RFPORI .40.> <NTIS> DER26.517/kAf.:
<CITLE>_PosteProcessing af aqroph:c Citations from DOE/RECON. NASA/RECON.

and COO/DROLS oRevitia t

<AUTHORS> Ballinger,. W. %. V. E. ; Harrison, I. Morphy, T.P,
<POD DESC> Lawrence Liverm...ra National Lab., CA. : <Cade> 068147000; 9513035 :--DC- ;- UCRL-89995-PEV.l. CON-841243-1-REV.1 Department
<DATE>_Add 1984
<PG> 17p
<LANGUAGE>--Englie
<DOCUMENT_TYPE>_Ccnterence proceeding
<PC> PC A02./MF A61
<JA>-GRAIY507: NSA:d08
<CO_OF_P1JUL5._united Stoles
<m7> Internaticmoi crisne iliormatjan meeting. Landon, UK. 4 Dec 1984.<C14,-W-7405-ENG-O0
<ABSTRACT> We ridir4 developed on interactive, eelf-guided program for the

-60-

69

Merged File of Heterogeneous Bibliographic Citations (continued)

joint post-otocessing of bibi.ogrophic-citat.ons from the federal informoticr
centers at_the_Deleartment of Energy_IDOE:- tne_Deleartment_of Defense_(DOD).
and the Notional A ee tics and Space Administration (NASA). This Program
is currently-installed-on-the Intelligent Gateway Processor-of the Technology
Intormation_SystemATIS/IGPI_ot the Lawrence Livermore Nntional_Laboratory
and is under evaluation by the TIS user community from re:Late terminale
by tleDnene dial-up. over TYMNET. and the ARPA computer network. Users
are_individually_ outhorized_for_outomoted_occess_to specific_informotion
centers. and use stonoord commands for the downloading. compilation,
and online rview of citations in o common format. Previously reported--
postproceesing caDobilitiel_nave_been further_exDrindeili_permitting:__(1)_
online citation review, categorization. and addition of new data elements:
(2)-disassembly ono re -assembly of citations: (3) statistical analysis
OT data field coritents.:_ (4) cross -correlation of data field contantel
and (5) concordance g ion. In addition. the new two-Doss interpreter
for_the_postprocessing_progrom_permitsthe_tronsformotion_of abbreviated
data field names into English preferred by eoch agency_. the statistical
analysis of the density and complet of data fields in-selected sets
Of_bibliographic_citationsthe_stiminotion of_redunctont citationejusing
user-specified criteria). and trend analysis. The latter is powerful
tool for the xploration of time-dependent characteristics in-a particular
field of research. of on organization. or for on author- Grophical_dittiloys
of publication rotes as a function of time and th normalized statistics
of terse' used in the description of the work.-con be-used to signet-new
directions of_ongoing eeee Orth and the intentlity Of its support. (ERA
citation 10:001706)

<DESCRIPTORS> Information: *Computer Networks; Information Retrieval:
SPec i ti cot ens

<Indexing Terms> ERDA/990300: NTISDE
<SH> 58_(Behavioral_cnd Social Sciences-Documentotion and Information Technology);

98 (Electronics and EJectricol Engineering --cempu(ers):_ 888 (Library
and Information Sciences --Info:motion Systems); 628 (Computere, Control,

__and_Information,Theary --Computer Software)
S./mom 1014...1110 ..)Et4C8:1 e855.
<DATABASE-SOURCE> DOE/recon
<TRANSLATION DATE>_Mon_Jul_1 1333:43 POT 1985_4489osse23)
<DOWNLOAD DATE> Mon Jul 1 10:1829 PDT 1985 (489086309)
<DOWNLOAD-FILE-NAME> gate
<PEPORT_NO-PAGE>_OCRL,,89995,Rev.1 P. 17DE85000617
<TITLE(MONO)> Post-processing of bibliographic citations from DOEflECON.
-NASA/RECON, one-DOD/DROLS. Revision 1

<ECIITOR_OR COMP> 8OItiflger.WA HomPilVE.Horrisãfl, I.: Murphy. T.P.
<CORPORATE AUTH> Lawrence Livermore National Lob.. CA (USA)
<CORPORATE CODE> 9513035
<TYPE> R
<SEC REPT NO> CONF -841243 - -1 -Rev.1
<PAGE NO> 17
<AVAILABILITY> NITS._ PC A02/MF A01.
<ORDER NUMBER> DE85000617
<CONTRACT_NO>__Controct W -7405 -ENG-48
<CONF TITLE> 8. international online information meeting
<CONF PLACE> Lendon-Ult
<CONF_DATE>_4_Clea 1984
<DATE> Aug 1984
<CO OF AUTH> US
<CO_OF_PUBL> US
<ANN J> ERA -10:001706:EDB-84:188555
<DISTRI8UTIONP-MN-32
<DOCUMENT ORIGIN> P
<BIS> TIC
<CATEGORIES> ED111990300
<PRIMARY CAT> ED8990300LGENERAL ANO_MISCELLANEOUSI_INFORMATION_NANDLING)
<ABSTRACT> We hove developed on interactive, self-guided program for the

joint post-processing-of-bibliographic citations from the federal
information centers_at the Deportment_of_Energy (DOC). Ahe_peportment of
Delenee (DOD). and the Notional Aeronautics and Space Administration
,(NASA). This progiam is currently instolled_on the-Intelligent Gateway
Processor ot_the_Technology Intormotinn System (TISPGP) ot_the_Laerence
Livermore Notional Laboratory and is under evaluation by the TIS user
community from remote terminals by telephone dial-up, over TYMNET, and the
ARpA computer network. Users ore individually authorized for automated
access to specific information centers. and use standard commands for the
downioadine. compilation. and online review of citations in a common
formal, PreviouslY tePorted post-processing copotoililies_nove been_further
xpanded, permitting: (1) online citation review. categorizat;on, and
adt.ition of new data elements: (2) di sssss mbly and re-assembly-of
citations: f3) statistical analysis of data field content!: (4) _

crams -correlation of data field contents: and (5) concordance g tiom.

-61-

7 0

Merged File of Heterogeneous Bibliographic Citations (continued)

le_addition the_new_two-Pass_interpreter_for_tne post,processing_progroe
Permits: the transformation of obbrevioteo data fettle names into englisr
names preferrsd by-each agency. the statisticat analysis of the oensity
ano completeness of elite fields in seleeted tett Of bibliogroOnic
citations. the elimination of redunaont citations (using user-specified
oriterio),_ond trend_onolysis._The latter so powerful tool for the
exploration of time-dependent characteristics in a particular field_of
research, of on organization, or for on author. Graphical displays of
publication rotes os_o_function_of_time_ond_the_normolized_stotistics of
terms Used in the description of the work, con be used to signal new

-d+rections of ongoing research and the intensity of its support.
<OESCRIPTORS> !INFORMATION - -computer networlts:INFORMATION RETRIEVAL:

SPECIFICATIONS
<ISSUE> 8423
<DOCUMENT_NO> 641166655
SAgGESSIOWW0=114C0/7389/
<DATABASE SOURCE>-DOE/recon
<TRANS:ATION DATE> Mon Jul 1 13:33:43 PDT 1985 (489098023)
<DOWNLOAO DATE> Mon Jul 1 10:18:29 POT 1985 (489086309)
<DOWNLOWL_FILE NAME>_gate
<REPOT: NO,PAGE> UCRL - -91383 P. 10;0E85001741
<TI :.iL(MONO)> Integration of on outomoted library eupport system with on
_ let.aligent gateway__ _

<EDII...R OR COMP> Burton. H.D.
<CCaPORATE AUTH> Lawrence Liverm,e MOtional CA (USA)
<CORPORATE CODE> 9513035
<TYPE> R
<SEC-REPT NO> CONF -840g17L-
<PAGE NO> 16
<AVAILABILITY> HTIS. PC A02/MF A01
<ORDER NUM8ER-DE85001741
<CONTRACT_N4> COntradt W-740f<-ENG48
<CONF TITLE> Integrate0 online library systems conference
<C1NF PLACE> At-lentoGt.. USA
<CONF_DATE>_13_50p 1981
<DATE> Aug 1984
<CO OF AUTHS US
tGO_OF_PUBL> US
<ANN J> E09-84:173691
<DISTRIBUTION> MN-32
<DOCUMENT ORIGIN> P
<BIS> TIC
<CATEGORIES> EDB990300
<PRIMARY CAT> EDB-990300(GENERAL AND MISCELLANEOUS; INFORMATION HANDLING)
<ABSTRACT> A new project of the Technology Information System (TIS) ot the

Lowrence_Livermore Notional Laboratory (LLNL)_colls for the_evoluotion of
commercially available library support packages and the extension and
integration of the most desirable system with the TIS gateway to provide a
comprehensive_p:ototype_for librories_and information_centersThili__
prototype system is planned to facilitate access to and management of
in-house activities such os cataloging. serials control, and acquisitions,
os_well_os_to_interface_to_external systems antl_services for_data
downloading and exchange, retrievtl. and post-processing. Cooperative
cataloging, distributed database processing, electronic-inter-library
loari.__and_customtzed_bibliography_produotoon_ore_some of the lectures
planned for the prototype. Development of rt user-friendly front-end
processor wilt ollow the user to negotiate his search query in a
semi,outometed_manner_using_a einSle._ English -like_command_tanguage._ The
TIS ot Lawrence Livermore Notional Laboratory (LLNL) nos developed
computer -based intelligent gateway-for automated access to such diverse,
geograOnicolly_distributed information systems_ot_DOE/RECON._DOD/DROLS.
NASA/RECON, CAS On-Line. DARC (France) and DECHEMA (west Germany), among
many others. New_informotion resources_centers-ore being added as requi, d
and users con connect simultaneously to more than one host to compare
their data. The TIS online master directory provides the user with
single. integrated view_of available and relevant resources. The automated
access. procedures permit thg SlOgg th concentrate on_the_infOrmation
aspects of his work rattier than be burdened with various log-on
procedures.-dotabose formats and protocols..The merger of the library
11912Port with the HS goteway_should provide u3ers_w,tho copobilitiii tit
oLcess and utilize the full spectrum of textual, numeric and vaphics data
fesOUTCOS-

<DESCRIPTORS> INFORMATION SYSTEMS - -computer networks:DATA BASE MANAC.EMENT:
LAWRENCE LIVERMORE LABORATORY

<ISSUE> 8421
<UPPOSTED DEDC> MANAGEMENT:NATIONAL ORGANIZATIONS;US AEC:US DOE:US ERDA:US

ORGANIZATIONS
<DOCUMENT NO> 84:173691

-62-

Merged File of Heterogeneous Bibliographic Citations (continued)

dACCESSIGN_NO->-84N330990
<DATA8ASE SOURCE>_NASA/reden _

<TRANSLATION DATE> Man ql 1 13:33:43 PDT 1905_(489098023)
dDOWNLOAD DATE> Mon Jul 1 10:18:29 PDT 1985 (489086309)
<DOWNLOAD FILE NAME> gate
<ISSUE>-22-
<PAGE> 3643_
<CATEGORY> 62
<RPT#D, DE84-013210 UCRL-90276 CONF-8406139-1
<CNT#> 0,7405...ENG-48
<DATE> 1984
<PAGES> 122
<DOC, CLASSIF;5_UNCLASSIFIED
<TITLE> An online directory of databases fo_r_material properties
<AUTHORS>-HAMPEL.-V. E.; BOLLINGER. W. A.; GAYNOR. C. A.: OLDANI. J; J.
<PAA> C/(Contral_Doto Corp.)
<PUB DESC>_Colifornia Univi.._Livermore.,LOwrence__Livermore__Lab, CSS

(Technology formation System.) AVAIL.NTIS SAP: MC "/MF_A01 Prete-Medat the 91h_l.hiernCODATA Jerusalem,-24-28 J
<DESCRIPTORS> DATA BASE MANAGEMENT SYSTEMS:DATA BASES:DiRalgRIES;INFORMATION
---DISSEMINATIONiINFORMATION SYSTEMS
<MINS> / COMOUTER_METWORKS/_COMPuTER TECHNIOUES/ DATA PROCESSING/ ON-LINESYSTEMS / STATISTICAL ANALYSIS
<ABA>-DOE-
<ABSTRACT>_An_Ontine_direetory_of.:databoses of materiol- properties an the

Technology Informotion System at Lawrence Livermore Notional_Laboratory
(LLNUTIS) is described. This directory is intended to provide interactive
oceessi_to_scientifie_and_technical_dotabascs-available to the public that
contain information pertaining to nuclear_atomic,
chemicaland mechanical properties of substances. In oddition to the 101
data files OreViOUsly_are repertedThe_information is updated with more
than 38 numeric dotabases and predictive systems in these fieldi lb
eddition_ta describing the contents of the database* updated information
is provided on the_ovoliabillty Of_the_detabases and their online acceso
over public telephone and data networks. Some of the numeric datetirstes_are
directly_accessible by authorised-users via the TIS Intelligent kw Gateway
cc Processor ot LLNL (TIS/I0P)i_with self,gulding procedures for the
downloading, merging, post-processing, and graphical/statistical analytis
of dato.

massuslorcimmulie mar
7dDATABASE-SOURCE>-DIALOG-NTIS FILE 6
<REPORT NO.>_SNTIS> _DE84013210_
<TITLE> Online Directory'of Databases 'or Material Properties
<AUTHORS> Hempel. V. E. : Bollinger. W. A. : Gaynor, C. A. ; Oldani, J.

J. -

<PUB DESC> Lawrence Livermore Notional Lab., CA; ; <Code> 068147000; 9513035 : DeportmentDC. ; LIC111.-90276: CONF-8406139-1
<DATE> May 1984
<PG> I22p
<AVPortions ore illegible in microfiche products.

.<LANGUAGE> EngLish
; <DOCUMENT TYPE> Conference proceeding
<PC> Pr_A06/MF A01
<JA> GPA184231 NSA0900
<CO OF PUBL> United State*
<NT> International CODATA conference. Jerusalem. Israel, 24 Jun 1984.
<CN> W-7405-ENG-40 .

<ABSTRACT> We hove created an online directory of dotaballes_of_material
properties on the Technology-Information System at Lawrence Livermore
National Loborotory This_dlrectory_is_intended to provide
interactive oceans to scientific and technical database* available le
ths_public_that_contoin information pertaining to nuclear atomic molecular .physical chemical, and mechanidat_properties_of_subsionces.-The directory
is based on work-lone-earlier by Joseph Hilsenroth of the Nationel BOreou_
of Standerdt_(NBS/OSRD)_and Jock H. Westbrook of General Electric Corporatior
In addition to the 101 data filetOreviously_roported. we have updated
the information and i,Antified more than 38 new numeric databatei_Jrid_
predictIve_systems in_these _fields. We hove included where applicahle .entries contained in the directorict_published Dy Cuodro_Associates.
CODATA. and UNESCO. In oddition to describing tne contents of th* dalaboies .we have provided_ updated_information_an the availability of the databaseaand their online access over public telephone and_doto networks. Theonline directory is prepared-for use-by scientists and engineer* and
should_enbanCe_the_shoring_Of_S_Olid T_resources aver communication network*.This directory is expected to become oarticularly_impertant to the nationaland international magnetic- and loser-energy fusion projects. _nuclearcriticality safety; and computer aided engineering programs. Some of
the numeric databases are directly accessible by buthorited users via

-63-

Merged file of Heterogeneous Bibliographic Citadons (continuf

'Pegi 38

describes the applications which have_benefited_trom_ARPANET during the
reporting period. Finally, it discusses on investigation of the techniques
for facsimile transmission between different devices over the network.
Earlier work in attacking hasts_bY_front,end_teahniques_has been broadened
to provide gateway facilities between computer networks. Here.
pursued_were_two_lines An interne twork Transmission Control Protocol TCP
hos been implemented which is designed ta be applicable to_o host-host
protocol between-hosts on different networks. Experiments to test the
properties_of this protocol have_been_storted between UCL. Stanford U and
Bolt. Beranek and N BBN. More effort hOS been put into_designing_ond
implementing .. gateway fuhctions when a specific node acts as a
gat4140Y 4 between two networks ond performs a mopping between the
standard protocols of each. Investigated was the applicabilitY of thiS
approach-to several networks, including the connection-ao ARPANET and the
UK Post Office Experimentol_Pocket_Switched_Service EPSS. Preliminary
results show that the technique should Ise feasible, but since the other
n_etworks_ore_not yet operational, the technique was not demonstrated.

.01110#1ESSOCMW4L82.2,
<DATABASE-SOURCE> SOC/Library ohd Info
<TRANSLATION DATE5._Mon_Jul t 13:4050 POT 1985-(489098450)
<DOWNLOAD DATE> Mon Jul 1 1 : 50 : se PDT 1985 (489088240)
<DOWNLOAD-FILE NAME> sdcgate
4DATE>_1976
<TITLE> The reference deportment: gateway to the NOtiOnel Library
<AUTHORS> Umo. M.G.
<PUB DESCS_Nigerbiblias. 1 (1) Jon 1976. 19-20. 22
<CO OF PUBL> Ehglish
<Cotegory-Code> RuNju
40ESCRIPTORSS,Reference Work: Departments; National libraries: Notional

Library of Nigeria: Reference DePOrtment
<Supplementary terms> Reference departments; Migeria
<ABSTRACT>_Outlines the_basic responsibilities of-the reference deportment.

which offers a 12 hour a day service to usersThe sprecid_of_material on
various floors and the constant shifting around of stock pose problems.
Briefly_asscribes_such routine_tosks oat maintaining the-public catalogue:
shelf-reading; stacktakingl compiling the picture file Of impertant
vents; and maintaining the mop file. Reference desk duties ore
nUmeretedA_policy of maximum courtesy and minimum delay is adopted in
attending to al. enquires.

4*CCESSION-NO,,>,A032248
.COATABASE SOURCE> OTIC/drelt-tr
<TRANSLATION DATE> Mon Jul 1 13:33:43 PDT 1985 (489098023)
<DOWNLOAD DATE> Mon-Jul 1 10:18:29 PDT 1985 (489086309)
<DOWNLOAD FILE NAME> cote
<FIELDS-AND-GROUPS> 15/5. 5/11
<ENTRY _CLASSIFICATION>_UNCLASSIFIED
<CORPORATE AUTHOR> RAND CORP SANTA MONICA CALIF
<TITLE>-GETTING-PEOPLE TO-PARKS.
<TITLE CLASSIFICATION> UNCLASSIFIED.
<AUTHORS> VAUGHAN.ROGER J. ;

<DATE>-APR-. 1976
<PAGINATION> 25P
<REPORT NUMBEF> P-5654
<REPORT-CLASS1FICATION>-UNCLASSIFIED
<DESCRIPTORS> .TPANSPORTATION4_ .PASSENGERS; vRECREATION: NEW YORK-CITY(NEW
YOPX); NEW JERSEY: PASSENGER VEHICLES: PARKING FACILITIES: ACCESS:

--ECONOMIC-ANALYSIS
<DESCRIPTOR_CLASSIFICATIONS UNCLASSIFIED
<IDENTIFIERS> GATEWAY NATIONAL RECREATION AREA
<IDENTIFIER-CLASSIFICATION> UNCLASSIFIED
<ABSTRACT> THE PURPOSE OF THIS PAPER IS TO PROVIDE AN ECONOMIC-PERSPECTIVE ON
THE PROBLEM OF TRANSPORTING PEOPLE TO GATEWAY NATIONAL RECREATION_AREA
LOCATED IN NEW-YORK-CITY-AND NORTHEASTERN NEW-JERSEY.-WHILE IT DOES NOT
CONTAIN ANY DETAILED EMPIRICAL CALCULATIONS FOR THE SOLUTION TO-THIS
COMPLEX ISSUE. IT IS HOPEO THAT SOME OF THE SUGGESTIONS MIGHT BE USEFUL
INPUT-INTO-THE-PLANNING PROCESS. AND MIGHT OPEN THE WAY TO MORE DETAILED
RESEARCH AND_ANALYSIS.

<ABSTRACT CLASSIFICATION> UNCLASSIFIED
<INITIAL-INVENTORY> 2
<LIMITATION_CODES>_1
<SOURCE CODE> 296600
<DOCUMENT-LOCATION> NTIS
<GEOPOLITICAL CODE> 0628
<TYPE COOE> W
kACCESSION!M0y,w.72 -au
<DATABASE SOURCE> SOC/Loorory cold Into
<TRANSLATION DATE> Mon Jui 1 13:40:50 PDT 1985 (489098450)
<DOWNLOAD DATE> Mon Jul 1 10:50:40 PDT 1985 (489088240)

73

